If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+15t-5t^2=0
a = -5; b = 15; c = +1;
Δ = b2-4ac
Δ = 152-4·(-5)·1
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-7\sqrt{5}}{2*-5}=\frac{-15-7\sqrt{5}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+7\sqrt{5}}{2*-5}=\frac{-15+7\sqrt{5}}{-10} $
| 15x+38=27x-74 | | 1/3(9x+3=-3x+4 | | -4(7z-1)+5z=-2(3z+4)-32 | | 12n+4(1200-n=9(1200) | | 25.5+t=-77 | | G(10)=3(x-1) | | 1/9b=1/3b | | 46=7x-10 | | 6x(4x+1)-5x^2=4x | | -16=x-2+6x | | 0/2x+7=10 | | a/7.4=8.30 | | 13x+3(3x+8)=x-3 | | s*s-s+2=0 | | 4=0(2)+b | | -5r-r=-6 | | -4(3x+1)+6x=6x+2 | | 2.4/3=x/0.8 | | 1-2q=-51-2q=-5 | | S^2-s+2=0 | | .2(3x)-×=6 | | 7x-2+5x+4=134 | | 4x-2x+3=2x+7 | | 288=16-5x×8 | | 9+-7d=9 | | 4+4x+3x=53 | | Y=6/5x-12/5 | | 1-2/3v=-6 | | 12z(-5+4)=3 | | -2(8x-1)=4(3x-4) | | 2x-1=7x+34 | | -5-(8g)=12 |